

Arm® CryptoCell-312

Guide to Generate and Verify Secure
Boot and Secure Debug Certificate
Chains
Non-Confidential Issue 01
Copyright © 2022 Arm Limited (or its affiliates).
All rights reserved.

107635

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 27

Arm CryptoCell-312
Guide to Generate and Verify Secure Boot and Secure Debug Certificate Chains

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100 1 July 2022 Non-Confidential First release Version 1.0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

https://www.arm.com/company/policies/trademarks

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 27

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Feedback

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-
feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be
offensive. Arm strives to lead the industry and create change.

https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 27

Contents

1 Overview ... 5

2 Certificate and certificate chain .. 6

3 Certificate Chain Verification Flow.. 8

3.1 Generic certificate chain verification flow ... 8

3.2 Secure boot certificate chain and verification flow ... 10

3.3 Secure debug certificate chain and verification flow .. 13

4 Certificate Chain Creation and Verification .. 18

4.1 Generating and verifying Secure boot certificate chain .. 18

4.2 Generating and verifying Secure debug certificate chain ... 23

5 Differences between Secure boot certificate chain and Secure debug certificate chain 27

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

1 Overview

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 27

1 Overview
Secure Boot and Secure Debug are the basic features of CryptoCell (CC) boot services. Secure boot and
Secure debug are based on certificate chain mechanisms using the RSA private and public key schemes.

This tutorial introduces the definition, generation and verification of Secure boot and Secure debug
certificate chains. It also describes the main differences between the Secure boot certificate chain and the
Secure debug certificate chain.

This guide contains the following sections:

• Certificate and certificate chain.
• Certificate chain verification flow.
• Certificate chain generation and verification.
• Differences between the Secure boot certificate chain and the Secure debug certificate chain.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

2 Certificate and certificate chain

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 27

2 Certificate and certificate chain
In cryptography, a certificate is also called a digital certificate, or identity certificate. It is an electronic
document used to prove the ownership and integrity of the information included in the certificate.

The following figure shows the general certificate structure:

Figure 2-1: General Certificate Structure

The certificate structure consists of the following parts:

• Header, which includes information such as certificate type, version, size, owner, flags, and validity
period.

• Certificate data, which includes public key and other information that must be signed.
• Signature, which is calculated over the header and certificate data by using RSA PSS scheme.

A certificate chain is made up of a list of certificates. The following figure shows an example certificate chain
structure, which includes three certificates in the chain: Certificate A, Certificate B, and Certificate C.

Figure 2-2: General Certificate Chain Structure

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

2 Certificate and certificate chain

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 27

The link between a certificate and its next certificate is that the certificate includes the hash of the public key
of the next certificate. The advantage of using a certificate chain over a single certificate is that the
certificate chain provides renewability and classification. For example, if Key B or Key C is leaked, it is easy
to replace Key B or Key C.

There are four different types of certificates in CC products:

• Key certificate
• Content certificate
• Enabler certificate
• Developer certificate

The certificate chain of CC products is composed of two or three self-signed certificates. Self-signed means
that the public key is included in the certificate and the certificate itself is signed with the corresponding
private key. As shown in Figure 2-2, Certificate A is signed by PrivKeyA, and Certificate A includes PubKayA
in its certificate data.

The CC supports two certificate flavors, Arm proprietary and X.509. Different certificate flavors have
different structures. However, both certificate flavors can be abstracted as previous figures. Arm
proprietary is designed to reduce the size. Therefore, its size is smaller than the X.509 certificate, and it is
suitable for resource-limited devices, such as IoT devices.

Secure boot and Secure debug certificates must use the same certificate flavor, either proprietary or X.509.
The certificate flavor must be defined for the entire certificate chain. You can configure the flavor by
changing the configuration flag CC_CONFIG_SB_X509_CERT_SUPPORTED in the file proj.ext.cfg as
follows:

Proprietary certificate

CC_CONFIG_SB_X509_CERT_SUPPORTED = 0

X.509 certificate

CC_CONFIG_SB_X509_CERT_SUPPORTED = 1

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 27

3 Certificate Chain Verification
Flow

3.1 Generic certificate chain verification flow
The certificate chain is based on that the previous certificate includes the public key hash of the next
certificate. Therefore, Certificate A can use Hash of PubkeyB to authenticate Certificate B by Hash
algorithm. Then, PubkeyB is used to verify the integrity of Certificate B by the RSA algorithm. Certificate C
can be authenticated and verified by Certificate B through using the same method. If the integrity and
authority of certificate A can be guaranteed, the integrity and authority of the whole chain is guaranteed.

To guarantee the integrity and authority of certificate A in the CC, Arm uses one-time programmable (OTP)
memory to save the hash of public key A. It is also called Hbk, Hbk0/1, or Root of Trust (RoT) in the CC.
Therefore, the whole certificate chain in the CC is shown as follows:

Figure 3-1: Whole Generate Certificate Chain Structure

Based on the above certificate chain, the following figure shows the general verification procedure of the
certificate chain.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 27

Figure 3-2: General Verification Procedure

To verify a certificate, the CC performs the following steps:

1. Retrieves the public key from the certificate and calculate its hash.
2. Verifies the calculated hash:

• If it is the first certificate in the chain, compares it with the hash value (Hbk, Hbk0\1) that is
stored in the OTP.

• Otherwise, compares it with the saved hash from the previous certificate in the chain.
3. Verifies the RSA signature using the public key of the certificate.
4. Saves the public key hash of the next certificate unless it is the last certificate in the chain.
5. Checks the software version from the certificate:

• If it is the first certificate in the chain, verifies that it is equal to or larger than the software
version (NV counter) stored in the OTP.

• Otherwise, verifies that it is equal to the software version in the previous certificate in the
chain.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 27

All certificates in the chain must have the same software version, which must be later than or the
same as the version saved in the OTP.

For details about how to verify other information in each certificate, this is covered later combining with a
specific certificate type.

3.2 Secure boot certificate chain and verification flow
The Secure boot certificate chain is composed of the key certificate and the content certificate. The purpose
of Secure boot is to guarantee that only authenticated and verified software images are loaded on the target
system.

The CC supports two Secure boot certificate schemes: two-level and three-level certificate schemes. You
must choose one of them based on system resource.

The two-level Secure boot certificate chain order is as follows:

1. Key certificate
2. Content certificate

The two-level Secure boot certificate chain order as follows:

1. Key certificate
2. Key certificate
3. Content certificate

The following figure shows an example of three-level Secure boot certificate chain:

Figure 3-3: Secure Boot Certificate Chain Structure

The key certificate is used to validate the hash of the public key of next certificate in the chain. The detailed
information of the key certificate is listed in Table 3-1. The table also shows the structure of Arm proprietary
key certificate. The X.509 key certificate includes the corresponding items, but the structure is slightly
different. This document uses the Arm proprietary certificate structure as an example.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 27

Table 3-1: Arm Proprietary Key Certificate

Section Field
Size

(32bits word)
Description Detailed information

Header

Magic Number 1 Certificate name 0x53426b63 SBkc (Secure Boot Key
Certificate).

Version Number 1 Version identifier
This version number is the certificate
version number (1.0), not the
software version.

Size 1 Signed content
size (in words)

The length from the start of Header to
the start of Signature (not including
Signature).

Flags 1 Bit[3:0] Hbk-ID
Bit[31:4] not used

Bit[3:0] Hbk-ID: 0=Hbk0, 1=Hbk1,
2=Hbk

Body

Public Key
96 N Correspond with the private key,

which is used to sign this certificate. 5 Np
Software
Version 1 Software version Software version is compared with the

Non-Volatile (NV) counter in the OTP.

HASH 8 Hash value Hash of the public key of the next
certificate.

Signature 96 RSA signature
The RSA signature of all preceding
items. Computed by using certificate
private key with RSA-PSS SHA256.

For key certificate verification, except the steps in previous general verification procedure shown in Figure
3-2, the further process includes saving hash of public key of the next certificate.

The content certificate is used to load and validate software components. The detailed information of
content certificate is listed in the following table:

Table 3-2: Arm Proprietary Content Certificate

Section Field
Size

(32bits word)
Description Detailed information

Header

Magic Number 1 Certificate name 0x53426363 SBcc (Secure Boot
Content Certificate).

Version
Number 1 Version identifier

This version number is the certificate
version number, not software version
number.

Size 1 Signed content size
(in words)

The length from the start of Header
to the start of Signature (not
including Signature).

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 27

Flags 1

• Bit[3:0] not
used

• Bit[7:4]
aes-ce-id

• Bit[11:8]loa
d-verify-
scheme

• Bit[15:12]c
rypto-type

• Bit[31:16]
counter of
images

• Bit[7:4] image encrypt key:
0=not encrypt, 1=Kceicv,
2=Kce

• Bit[11:8]: load and verify, 1=
verify only in flash, 2= verify
only in memory, 3=load only

• Bit[15:12]: 0=AES and HASH,
1=AES then HASH
bit[31:16]: how many images
are signed, valid value=[1,
16]

Body

Public Key
96 N Correspond with the private key

which is used to sign this certificate. 5 Np

SW Version 1 Software version It is compared with the software
version in previous key certificate.

NONCE 2 It is used to generate AES IV.

Software
Records

N*(8+3)
N= counter of
images

8+3 = 1 Hash value +
1 load address + 1
max size + 1 Flag

Flag: 0=image is not encrypted,
1=image is encrypted.

Signature 96 RSA signature
The RSA signature of all preceding
items. Computed by using certificate
private key with RSA-PSS SHA256.

None
Signed
Info

N*2
N= counter of
images

2= 1 store address +
1 image actual size

The sequence here must be the same
as software records in the body part.

For content certificate verification, except the steps in previous general verification procedure shown in
Figure 3-2, the further process includes loading and verifying the software images.

The following figure shows the specific remaining verification processing of the content certificate.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 27

Figure 3-4: Content Certificate Specific Verification Procedure

3.3 Secure debug certificate chain and verification flow
The Secure debug certificate chain is composed of the key certificate, enabler certificate, and developer
certificate. The purpose of the Secure debug is to guarantee that only authenticated and verified authorities
can enable or disable the device-specific debug functions or features, or shift the device to the RMA
Lifecycle.

The CC supports two Secure debug certificate schemes: 2-level and 3-level certificate schemes. The
customer must choose one of them based on the system resource.

The 2-level Secure debug certificate chain order is enabler certificatedeveloper certificate.

The 3-level Secure debug certificate chain order is key certificate enabler certificatedeveloper
certificate.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 27

The following figure shows an example of 3-level Secure debug certificate chain.

Figure 3-5: Secure Debug Certificate Chain Structure

The key certificate in the Secure debug certificate chain is the same as in the Secure boot certificate chain.
Its purpose is to validate the hash of the public key of the next certificate in the chain. For detailed
information, see Table 3-1.

The enabler certificate defines the allowed DCU value and DCU lock value or RMA flag. The DCU value
determines which DCU bits are open for editing by the developer. The DCU lock value determines which of
the DCU bits are locked after successful Secure debug. The DCU value and DCU lock value are used to
enable or disable specific debug functions. The RMA flag is used to shift the device LCS to RMA. The detailed
information of enabler certificate is shown in the following table:

Table 3-3: Arm Proprietary Enabler Certificate

Section Field
Size

(32bits word)
Description Detailed information

Header

Magic
Number 1 Certificate name 0x5364656E Sden (Secure Debug Enabler

Certificate)

Version
Number 1 Version identifier This version number is the certificate

version number, not the software version.

Size 1 Signed content size (in
words)

The length from the start of Header to the
start of Signature (not including
Signature).

Flags 1

• Bit[3:0] Hbk-
ID

• Bit[7:4] LCS
• Bit[11:8]

RMA
• Bit[31:12]

reserved

• Bit[3:0] Hbk-ID: 0=Hbk0, 1=Hbk1,
2=Hbk

• Bit[7:4] LCS: 0=CM, 1=DM, 5=SE,
7=RMA

• Bit[11:8] RMA: 0=not enter RMA,
!0=enter RMA

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 27

Body

Public Key
96 N Correspond with the private key, which is

used to sign this certificate. 5 Np

DCU Mask 4 DCU mask values The DCU value that the enabler authorizes
to use.

DCU Lock 4 DCU lock values The DCU lock value that the enabler
authorizes to use.

Hash 8 Hash value Hash of public key of developer
certificate.

Signature 96 RSA signature

• RSA signature of all preceding
items.

• Computed by using certificate
private key with RSA-PSS
SHA256.

The developer certificate is generated by embedding the device SoC-ID, and the DCU value is based on the
enabler certificate. The DCU value and DCU lock value in the enabler certificate represent which debug
functions are authorized by the ICV and OEM. The DCU value in the developer certificate represents which
debug functions are enabled or disabled by the developer. The developer can only enable the functions
authorized by the ICV and OEM, but cannot enable the functions that are not authorized by the ICV and
OEM.

The developer is the person who debugs the device. The enabler is the ICV, OEM, or the third party, which is
trusted and authorized by the ICV and OEM. The enabler has the authority to open specific debug
capabilities to developers. Developers enable debug capabilities on a device based on the enabler certificate.

The detailed information about the developer certificate is listed in the following table:

Table 3-4: Arm Proprietary Developer Certificate

Section Field Size (32bits word) Description Detailed information

Header

Magic
Number 1 Certificate name 0x53646465 Sdde (Secure Debug

Developer Certificate).

Version
Number 1 Version

identifier

This version number is the certificate
version number, not the software
version. Version 1.0 is used in this
document.

Size 1 Signed content
size (in words)

The length from the start of Header to
the start of Signature (not including
Signature).

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 27

Flags 1 Bit[31:0]
reserved All fields are reserved.

Body

Public Key
96 N Correspond with the private key, which is

used to sign this certificate. 5 Np

DCU
Mask 4 DCU mask values The DCU value that the developer decides

to use.

SoC ID 8 SoC ID The SoC ID is derived from Huk by using
Kdf in Secure boot.

Signature 96 RSA signature
The RSA signature of all preceding items.
Computed by using certificate private key
with RSA-PSS SHA256

The main items in Secure debug certificates are DCU Mask and DCU Lock. The Secure debug uses a
dedicated hardware interface to output control words (DCU value and DCU lock value) based on:

• The DCU Mask and DCU Lock in Secure debug certificates
• The device internal DCU-related items, such as:

o The DCU lock value in the OTP
o The DCU default value
o The DCU permanent disable value
o The DCU restriction mask in the RTL

For Secure debug, except certificate authentication and verification, the remining process is to extract and
calculate DCU value and DCU lock value.

The following figure shows the flow of Secure debug processing:

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

3 Certificate Chain Verification Flow

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 27

Figure 3-6: Secure Debug Certificate Processing

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 27

4 Certificate Chain Creation and
Verification

4.1 Generating and verifying Secure boot certificate
chain

CC products provide offline tools to generate certificates for the Secure boot and Secure debug. The offline
tools are Python scripts, which receive a configuration file as a parameter to create certificates.

The offline tools are in utils/src/cc3x_boot_cert/cert_utils/ or
utils/src/cc3x_boot_cert/x509cert_utils/ to generate Arm proprietary certificates or X.509
certificates respectively.

Before using the offline tools, you must build utilities first. You can consult the release note to build the
utilities. After the build is complete, the corresponding tools are in utils/bin/. To run the tools, open a
command line under the directory utils/bin/ and execute corresponding scripts.

For the Secure boot, the offline tools include key certificate generation tool (cert_key_util.py) and
content certificate generation tool (cert_sb_content_util.py). To run the tools, execute the following
commands:

python3 cert_key_util.py <cfg_file>

python3 cert_sb_content_util.py <cfg_file>

Therefore, it is important to generate the cfg_file, which includes all required parameters for generating the
certificate.

The following table shows the required parameters to generate key certificate. Of all the parameters, cert-
keypair-pwd is optional and other parameters are mandatory. According to the table, you must prepare
RSA keypair, hbk-id, NV counter, and the public key of the next certificate before generating the key
certificate.

Table 4-1: cert_key_util.py Configuration File Parameters

Parameter Input/Output (I/O) Description

[KEY-CFG] I A mandatory Header.

cert-keypair I A mandatory PEM format file including RSA
keypair for signing this certificate.

cert-keypari-pwd I Optional password for the RSA keypair file

hbk-id I

Mandatory and the Hbk-id indicates which
field of OTP memory is used to verify this
certificate.

The Hbk-id can be:
• 0: Hbk0 (ICV)

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 27

• 1: Hbk1 (OEM)
• 2: Hbk

nvcounter-val I It is a mandatory counter, corresponding to the
software version in the certificate.

next-cert-pubkey I
A mandatory PEM format file, including RSA
public key for signing the next certificate in the
chain.

cert-pkg O A mandatory filename of the final output key
certificate package in binary format.

To generate key certificate, perform the following steps:

1． Prepare the RSA key pair
A. Use the following openssl command to generate RSA key pair.

openssl genrsa -aes256 -out firstkey.pem 3072
The output file firstkey.pem includes both public key and private key. When you execute the
command, you are requested to input a password. This password is used to encrypt the private key
of the key pair and the encrypt algorithm is aes256.

B. Use the following command to extract the public key from the key pair of firstkey.pem.

openssl rsa -in firstkey.pem -out firstpublic.pem -pubout

If this key pair is used to generate the first certificate in the chain, its public key is used to generate
RoT.

If this key pair is used to generate other certificates in the chain, its public key is used as a parameter
to generate the previous certificate.

2． Decide the Hbk-id based on the RoT scheme.
Hbk-id has the following values:
 0 = Hbk0 (128bit)
 1 = Hbk1 (128bit)
 2 = Hbk (256bit)

If you want to generate the first key certificate in the chain, the public key hash of step 1 is RoT. You
must generate Hbk or Hbk0/1 based on the first step. Arm provides a tool (hbk_gen_util.py) to
help you generate Hbk or Hbk0/1. You can use the following command to generate a 256bit Hbk in
little endianness：
 python3 ./hbk_gen_util.py -key firstpublic.pem

If you want to generate Hbk0 based on firstpublic.pem, use the following command:

python3 ./hbk_gen_util.py -key firstpublic.pem -hash_format
SHA256_TRUNC

You can use the following command to show more information about hbk_gen_util.py.

./hbk_gen_util.py --help

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 27

3． Determine the NV counter value. For example, the NV counter value is 5.
4． Get the public key of the next certificate. For example, the public key is secondpubkey.pem
5． Generate the configuration file.

The following example is a key certificate configuration file, named as sb_first_key_cert.cfg
[KEY-CFG]
cert-keypair = ./firstkey.pem
cert-keypair-pwd = ./pwd.txt
hbk-id = 2
nvcounter-val = 5
next-cert-pubkey = ./secondpubkey.pem
cert-pkg = firstkey_cert.bin

6． Generate the key certificate by using the following command:
python3 ./cert_key_util.py sb_first_key_cert.cfg

After the previous steps are complete, the first key certificate firstkey_cert.bin is generated,
according to the sb_first_key_cert.cfg configuration file.

For the Secure boot, the steps to generate the second key certificate are similar to the steps to generate the
first key certificate in the chain. The differences include cert-keypair and its own cert-keypair-pwd for
signing the second key certificate and the next-cert-pubkey of the keypair for signing the content
certificate.

The configuration file for generating the content certificate is different from the configuration file for
generating the key certificate. The following table shows the required parameters for generating the content
certificate.

Table 4-2: cert_sb_content_util.py Configuration File Parameters

Parameter
Input/Output

(I/O)
Description

[CNT-CFG] I A mandatory header.

cert-keypair I A mandatory PEM format file, including RSA keypair for signing this
certificate.

cert-keypari-
pwd I An optional password for the RSA keypair file.

load-verify-
scheme I

A mandatory software image verification scheme.

• 0: load and verify from flash to memory
• 1: full hash verification in flash without loading to memory
• 2: verify in memory
• 3: load from flash

crypto-type I

Mandatory cryptographic verification and decryption mode.
• 0: both AES and hash are calculated on plain image
• 1: AES is calculated on plain image, but hash is calculated on

the encrypted image.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 27

aes-ce-id I

Mandatory ID of the key that is used for encryption.
• 0: None (no encryption for the SW image)
• 1: Kceicv (ICV)
• 2: Kce (OEM)

aes-enc-key I An optional text file, which includes the key used to encrypt the
image. If aes-ce-id=0, aes-enc-key is not included.

images-table I

A mandatory text file containing the list of SW image files to be
processed. Each line refers to a single image with following
parameters:
<image file name> <mem load addr> <flash store
addr> <
image max size> <encryption flag: 0=not
encrypted, 1=encrypted>

nvcounter-val I A mandatory counter and it is corresponding to the software version
in the certificate.

cert-pkg O A mandatory filename of the final output content certificate package
in binary format.

Compared to the key certificate parameter table, the following parameters are specific to the content
certificate: load-verify-scheme, crypto-type, ase-ce-id, aes-enc-key and images-table. For
more information about each parameter, see the Software Integrators Manual (SIM).

The steps to generate the content certificate are as follows:

1. Prepare the RSA keypair
2. Decide the lode-verify-scheme.

3. Decide crypto-type.

4. Decide aes-ce-id and aes-enc-key. If aes-ce-id=0, you do not need to list aes-enc-key. If

ase-ce-id=1, the ase-enc-key should indicate the file that includes Kceicv. If ase-ce-id=2,

the ase-enc-key should indicate the file that includes Kce.

5. Prepare images-table.
Images-table is a text file, which contains the information of the list of authenticated software
image files. Each line refers to a single image, with the following parameters:
<image file name> <mem load addr> <flash store addr> <image max size>
<encryption flag>
The following is an example of image-table named as images.tbl.

image3.bin 0x30008000 0x0000cef0 0x00004000 0x0
image2.bin 0x30006000 0x00003458 0x00003000 0x0

6. Decide nvcounter-val. It should be same as the nvconter-val in previous key certificates in

the chain.
7. Generate a configuration file based on above steps. The following is an example named as

content_config_file.cfg.
[CNT-CFG]
cert-keypair = ./content_keypair.pem
cert-keypair-pwd = ./pwd.txt
images-table = ./images.tbl
nvcounter-val = 5
load-verify-scheme = 0

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 27

aes-ce-id = 2
crypto-type = 0
aes-enc-key = ./aes_key.txt
cert-pkg = content_pkg.bin

8. Generate content certificate by using the following command:
python3 ./cert_sb_content_util.py content_config_file.cfg

After above steps, the content certificate of binary format content_pkg.bin is generated.

Now you can generate a Secure boot certificate chain. The following figure shows the overall flow of
generating a 3-level Secure boot certificate chain. After you finish this process, you can generate three
separate certificates.

Figure 4-1: Secure Boot Certificate Chain Generation Flow

After the Secure boot certificate chain is deployed to device, the ROM uses the following APIs to
authenticate and verify the certificate chain.

CC_SbCertChainVerificationInit()

CC_SbCertVerifySingle()

A piece of sample code for how to use the APIs to verify the certificate chain is listed as follows:

CCError_t BootROM_SecureBootSequence()
{
 ret = CC_SbCertChainVerificationInit(keyA_CertPkgInf);
 if (ret != OK)
 return ret;
 ret = CC_SbCertVerifySingle(… keyA_CertPkgInf …);
 if (ret != OK)
 return ret;
#ifdef THREE_LEVEL_SCHEME
 ret = CC_SbCertVerifySingle(… keyB_CertPkgInf …);
 if (ret != OK)
 return ret;
#endif /* THREE_LEVEL_SCHEME */
 ret = CC_SbCertVerifySingle(… content_CertPkgInf …);
 return ret;
}

For details about using Secure boot APIs to verify the Secure boot certificate chain, refer to the integration
test function bsvIt_secureBoot() in bsv_integration_test.c.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 27

4.2 Generating and verifying Secure debug certificate
chain

As for Secure debug, the 3-level certificate chain is key certificate  enabler certificate  developer
certificate. The generation of key certificate for Secure debug is the same as for Secure boot. For the enabler
and developer certificate, the CC provides the following python tools to generate them:

cert_dbg_enabler_util.py

cert_dbg_developer_util.py

To run the tools, use the following commands:

python3 cert_dbg_enabler_util.py <cfg_file>

python3 cert_dbg_developer_util.py <cfg_file>

The parameters to generate the enabler certificate are listed in the following table:

Table 4-3: cert_dbg_enabler_util.py Configuration File Parameters

Parameter I/O (Input/Output) Description

[ENABLER-DBG-
CFG] I Mandatory Header

cert-keypair I Mandatory PEM format file including RSA keypair for
signing this certificate

cert-keypari-
pwd I Optional password for the RSA keypair file

lcs I Mandatory LCS indicates this certificate is intended for:
0: CM, 1: DM, 5: SE, 7: RMA

rma-mode I Mandatory flag when you want to use this certificate for
entry into RMA LCS by setting it to nonzero value.

debug-mask I Mandatory if you want to use this certificate to authorize
debug function but not entry into RMA LCS.

debug-lock I Mandatory if you want to use this certificate to authorize
debug function but not entry into RMA LCS.

hbk-id I Mandatory if rma-mode is defined or if the Secure debug
certificate chain is 2 level.

key-cert-pkg I Mandatory if the certificate chain is 3-level.

next-cert-
pubkey I Mandatory PEM format file including RSA public key for

signing developer certificate in the chain.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 27

cert-pkg O Mandatory filename of the final output enabler certificate
package in binary format.

There are some points need to be noted. Firstly, the Secure debug certificate is used to enable or disable
debug function or transfer LCS. Therefore, rma-mode, debug-mask, and debug-lock are mutually exclusive.
Secondly, the key-cert-pkg is one of the input parameters. That means the key certificate is embedded in the
enabler certificate. Similarly, the enabler certificate package is also embedded in the developer certificate.
For the Secure debug certificate chain, there is only one binary package, which includes all the certificates in
the chain.

To generate enabler certificate, the general steps are as follows:

1. Prepare RSA keypair.
2. Extract the public key of the RSA keypair.
3. Embed the public key to the key certificate if you use a 3-level certificate chain. Or use it to generate

Hbk, Hbk0/1 if you use a 2-level certificate chain.
4. Decide the lcs.
5. Decide whether to use rma-mode or debug-mask, debug-lock, and prepare corresponding

parameters.
6. Decide the hbk-id if rma-mode is set or a 2-level certificate chain is used.
7. Prepare Key certificate if a 3-level certificate chain is used.
8. Generate a configuration file based on above steps. The following example uses the certificate to

enable or disable debug functions. The example file is named as enabler_config_file.cfg.
[ENABLER-DBG-CFG]
cert-keypair = oem_keypair1.pem
cert-keypair-pwd = pwd.txt
lcs = 1
#rma-mode =
debug-mask[0-31] = 0x00112233
debug-mask[32-63] = 0x44556677
debug-mask[64-95] = 0x8899AABB
debug-mask[96-127] = 0xCCDDEEFF
debug-lock[0-31] = 0x00112233
debug-lock[32-63] = 0x44556677
debug-lock[64-95] = 0x8899AABB
debug-lock[96-127] = 0xCCDDEEFF
hbk-id = 2
#key-cert-pkg =
next-cert-pubkey = dev_pubkey1.pem
cert-pkg = cert_enabler_pkg.bin

9. Generate the enabler certificate by using the following command:
python3 ./cert_dbg_enabler_util.py enabler_config_file.cfg

After above steps, the enabler certificate of binary format cert_enabler_pkg.bin is generated.

To generate developer certificate, consult the following table to generate the configuration file:

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 27

Table 4-4: cert_dbg_developer_util.py Configuration File Parameters

Parameter I/O Description

[ENABLER-DBG-
CFG] I A mandatory Header

cert-keypair I A mandatory PEM format file including RSA keypair for
signing this certificate

cert-keypari-
pwd I An optional password for the RSA keypair file

soc-id I A mandatory binary file holding 256-bit SoC_ID of the device.

debug-mask I A mandatory DCU mask that is set by the developer.

enabler-cert-
pkg I A mandatory enabler debug certificate package.

cert-pkg O A mandatory filename of the final output enabler certificate
package in binary format.

To generate developer certificate, perform the following steps:

1. Prepare the RSA keypair.
2. Extract the public key of the RSA keypair.
3. Send the public key to ICV and OEM to ask for an enabler certificate.
4. Extract soc-id from the target device.

5. Determine the debug-mask to be used.
6. Generate a configuration file based on previous steps.

For example, the following configuration file, developer_config_file.cfg, uses the certificate
to enable or disable debug functions:

[DEVELOPER-DBG-CFG]
cert-keypair = dev_keypair1.pem
cert-keypair-pwd = pwd.txt
soc-id = soc_id1.bin
debug-mask[0-31] = 0x00112233
debug-mask[32-63] = 0x44556677
debug-mask[64-95] = 0x8899AABB
debug-mask[96-127] = 0xCCDDEEFF
enabler-cert-pkg = cert_enabler_pkg.bin
cert-pkg = cert_developer_pkg.bin

7. Generate the enabler certificate by using the following command.
python3 ./cert_dbg_developer_util.py developer_config_file.cfg

After the previous steps are complete, the developer certificate of binary format
cert_developer_pkg.bin is generated. This means that the whole Secure debug certificate chain is

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

4 Certificate Chain Creation and Verification

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 27

generated. The cert_developer_pkg includes the key certificate, enabler certificate, and developer
certificate in one binary file. The chain for the Secure debug is logic.

The following figure shows the flow of generating the Secure debug certificate chain. The vertical dot-line
means the left part is in a trusted environment, while the right part is in an untrusted environment.

Figure 4-2: Secure Debug Certificate Chain Generation Flow

To verify the Secure debug certificate chain in ROM code, only the API CC_BsvSecureDebugSet() is
needed.

For details about using Secure debug APIs to verify the Secure debug certificate chain, see the integration
test function bsvIt_secureDebug () in the bsv_integration_test.c file.

Arm CryptoCell-312 Guide to Generate and Verify Secure Boot
and Secure Debug Certificate Chains

107635
Issue 01

5 Differences between Secure boot certificate chain and
Secure debug certificate chain

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 27

5 Differences between Secure boot
certificate chain and Secure
debug certificate chain

Logically speaking, both the Secure boot certificate chain and Secure debug certificate chain have two or
three certificates. Physically speaking, the Secure boot certificate chain consists of three sperate binary
packages, while the Secure debug certificate chain has only one binary package. For Secure debug, the key
certificate is embedded in enabler certificate and then the enabler certificate is embedded in developer
certificate.

Another difference is that the Secure boot certificate chain and Secure debug certificate chain can apply to a
different number of devices. The Secure boot certificate chain can work on a serial of devices. However, the
Secure debug certificate chain can apply to only one device, because the device SoC-ID is embedded in the
developer certificate in the chain.

For the Secure boot certificate chain, all key certificates and content certificates are owned by ICV or OEM
that produces the device. For the Secure debug certificate chain, the key certificate is owned by ICV or OEM.
The enabler certificate is owned by ICV or OEM or the authorized third party. However, the developer
certificate is owned by another party, which might be the seller. Therefore, the Secure boot certificate is
initiated by ICV or OEM, while the Secure debug certificate is usually initiated by the developer.

The following scenario describes an example use case for the Secure debug certificate:

1. The device in field is broken.
2. The user asks for the developer, who sells the device or the maintenance station, to fix the issue.
3. The developer generates his or her own RSA key pair, submits the public key to ICV or OEM, and

asks for an enabler certificate.
4. The ICV or OEM generates the enabler certificate that includes HASH of the developer public key,

and authorized debug functions that are represented by the DCU value and DCU mask.
5. The ICV or OEM sends the enabler certificate to the developer.
6. The developer extracts the SoC-ID from the broken device.
7. The developer generates the developer certificate based on SoC-ID, his or her own DCU value and

enabler certificate.
8. The developer transfers the developer certificate to the broken device to enable debug functions,

and tries to fix the issues in the broken device.
9. The developer fixes the issue and removes the developer certificate from the device.

Another use case is that the broken device cannot be fixed by the developer. Then, the device is returned to
the ICV or OEM. The ICV or OEM generates the enabler certificate and developer certificate directly and
sets the RMA flags, but not the DCU value and DCU musk in the enabler certificate. This certificate chain
transfers the LCS of the device to RMA. Then the broken device can be analyzed deeply.

	1 Overview
	1 Overview
	2 Certificate and certificate chain
	3 Certificate Chain Verification Flow
	3.1 Generic certificate chain verification flow
	3.2 Secure boot certificate chain and verification flow
	3.3 Secure debug certificate chain and verification flow

	4 Certificate Chain Creation and Verification
	4.1 Generating and verifying Secure boot certificate chain
	4.2 Generating and verifying Secure debug certificate chain

	5 Differences between Secure boot certificate chain and Secure debug certificate chain

